55 research outputs found

    Eye position sense contributes to the judgement of slant.

    Get PDF
    We measured monocular judgements of the slant of a cube face while varying eye position in the absence of stereoscopic and external lighting cues. Errors were found to be small, only 10% on average of the cube\u27s eccentricity. Two factors appear to have contributed approximately equally to this error: an underestimate of cube slant as seen by the eye and an underestimate of eye position. When prism adaptation altered the sensed eye position, the pattern of slant judgements changed to reflect the altered sense of eye position

    Eye position signal modulates a human parietal pointing region during memory-guided movements.

    Get PDF
    Using functional magnetic resonance imaging, we examined the signal in parietal regions that were selectively activated during delayed pointing to flashed visual targets and determined whether this signal was dependent on the fixation position of the eyes. Delayed pointing activated a bilateral parietal area in the intraparietal sulcus (rIPS), rostral/anterior to areas activated by saccades. During right-hand pointing to centrally located targets, the left rIPS region showed a significant increase in activation when the eye position was rightward compared with leftward. As expected, activation in motor cortex showed no modulation when only eye position changed. During pointing to retinotopically identical targets, the left rIPS region again showed a significant increased signal when the eye position was rightward compared with leftward. Conversely, when pointing with the left arm, the right rIPS showed an increase in signal when eye position was leftward compared with rightward. The results suggest that the human parietal hand/arm movement region (rIPS), like monkey parietal areas (Andersen et al., 1985), exhibits an eye position modulation of its activity; modulation that may be used to transform the coordinates of the retinotopically coded target position into a motor error command appropriate for the wrist

    Face Inversion Reduces the Persistence of Global Form and Its Neural Correlates

    Get PDF
    Face inversion produces a detrimental effect on face recognition. The extent to which the inversion of faces and other kinds of objects influences the perceptual binding of visual information into global forms is not known. We used a behavioral method and functional MRI (fMRI) to measure the effect of face inversion on visual persistence, a type of perceptual memory that reflects sustained awareness of global form. We found that upright faces persisted longer than inverted versions of the same images; we observed a similar effect of inversion on the persistence of animal stimuli. This effect of inversion on persistence was evident in sustained fMRI activity throughout the ventral visual hierarchy, including the lateral occipital area (LO), two face-selective visual areasβ€”the fusiform face area (FFA) and the occipital face area (OFA)β€”and several early visual areas. V1 showed the same initial fMRI activation to upright and inverted forms but this activation lasted longer for upright stimuli. The inversion effect on persistence-related fMRI activity in V1 and other retinotopic visual areas demonstrates that higher-tier visual areas influence early visual processing via feedback. This feedback effect on figure-ground processing is sensitive to the orientation of the figure

    Behavioural Significance of Cerebellar Modules

    Get PDF
    A key organisational feature of the cerebellum is its division into a series of cerebellar modules. Each module is defined by its climbing input originating from a well-defined region of the inferior olive, which targets one or more longitudinal zones of Purkinje cells within the cerebellar cortex. In turn, Purkinje cells within each zone project to specific regions of the cerebellar and vestibular nuclei. While much is known about the neuronal wiring of individual cerebellar modules, their behavioural significance remains poorly understood. Here, we briefly review some recent data on the functional role of three different cerebellar modules: the vermal A module, the paravermal C2 module and the lateral D2 module. The available evidence suggests that these modules have some differences in function: the A module is concerned with balance and the postural base for voluntary movements, the C2 module is concerned more with limb control and the D2 module is involved in predicting target motion in visually guided movements. However, these are not likely to be the only functions of these modules and the A and C2 modules are also both concerned with eye and head movements, suggesting that individual cerebellar modules do not necessarily have distinct functions in motor control

    Central neural mechanisms contributing to cerebellar tremor produced by limb perturbations

    No full text

    Loss of set in muscle responses to limb perturbations during cerebellar dysfunction

    No full text

    Violations of Listing's law after large eye and head gaze shifts

    No full text

    Effects of changes in mechanical state of limb on cerebellar intention tremor

    No full text

    Implications of rotational kinematics for the oculomotor system in three dimensions

    No full text

    Representation of head-centric flow in the human motion complex.

    Get PDF
    Contains fulltext : 50364.pdf (publisher's version ) (Open Access)Recent neuroimaging studies have identified putative homologs of macaque middle temporal area (area MT) and medial superior temporal area (area MST) in humans. Little is known about the integration of visual and nonvisual signals in human motion areas compared with monkeys. Through extra-retinal signals, the brain can factor out the components of visual flow on the retina that are induced by eye-in-head and head-in-space rotations and achieve a representation of flow relative to the head (head-centric flow) or body (body-centric flow). Here, we used functional magnetic resonance imaging to test whether extra-retinal eye-movement signals modulate responses to visual flow in the human MT+ complex. We distinguished between MT and MST and tested whether subdivisions of these areas may transform the retinal flow into head-centric flow. We report that interactions between eye-movement signals and visual flow are not evenly distributed across MT+. Pursuit hardly influenced the response of MT to flow, whereas the responses in MST to the same retinal stimuli were stronger during pursuit than during fixation. We also identified two subregions in which the flow-related responses were boosted significantly by pursuit, one overlapping part of MST. In addition, we found evidence of a metric relation between rotational flow relative to the head and fMRI signals in a subregion of MST. The latter findings provide an important advance over published single-cell recordings in monkey MST. A visual representation of the rotation of the head in the world derived from head-centric flow may supplement semicircular canals signals and is appropriate for cross-calibrating vestibular and visual signals
    • …
    corecore